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We derive exact asymptotic results for a stochastic queueing model in which tasks are executed according to
a continuous-valued priority. The distribution P��� of the waiting times � of executed tasks for this model is
shown to behave asymptotically as a power law, P�����−3/2, when the average rates of task arrival � and
execution � satisfy ��� �as was earlier noted empirically�. For ���, P�����−5/2 exp�−���−���2��.
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I. INTRODUCTION

In an interesting recent series of papers �1–3�, Barabási
and co-workers analyzed data on activities such as web
browsing, library use, and the exchange of letters and e-mail
messages. Studying the distributions P��� of waiting times �
between successive events—for example, the time it takes
for the recipient of a letter or e-mail message to reply to
it—they reported that the distributions exhibited heavy tails
consistent with power laws P�����−� over some range of �.
The reported values of � were close to 3 /2 for written cor-
respondence and close to 1 for the other activities. These
results stand in contrast to much of the large literature on
waiting-time distributions for real and model queues, where
exponential decays of P��� are typical �4�.

Several elementary queueing models were considered in
Refs. �1–3� to try to explain the observed behavior. One of
these models was the continuous-priority version of a classic
model by Cobham �5�—a stochastic queue wherein tasks are
selected for execution on the basis of a discrete task priority
value. The continuous-priority version of this model was in-
deed found numerically to exhibit asymptotic power-law be-
havior of P���, with exponent 3 /2, provided the average rate
� of task arrival equals �1–3� or exceeds �2,3� the average
rate � of task execution. We subsequently derived this result
analytically �6�, as well as the new result �6� P���
��−5/2 exp�−� /�0� for ���, by approximating the number
of tasks in the queue by a continuous variable, and thereby
mapping the model onto the familiar problem of biased dif-
fusion; here �0 is a characteristic time that diverges as ��
−��−2 as � approaches � from below.

In the present paper, we solve the model without approxi-
mation, deriving exact asymptotic results for the realistic
case in which the number of tasks is an integer �7�. We
show that indeed P�����−3/2 for ���, and that P���
��−5/2 exp�−���−���2�� for ���.

II. THE MODEL: STOCHASTIC, CONTINUOUS-
PRIORITY QUEUE

In the continuous-priority version �1� of the Cobham
model �5�, new tasks, having priority x �with 0�x�1� cho-
sen randomly from an arbitrary probability distribution ��x�
�which we make uniform by a simple transformation, with-
out any loss of generality �6��, arrive in the queue with an
average rate �. The highest-priority task in the queue is ex-

ecuted with an average rate �. As in Ref. �1�, we consider the
case in which the removal from the queue of a task that has
been selected for execution occurs instantaneously �i.e., with
zero service time�.

III. ANALYSIS

In a manner similar to Ref. �6�, the overall probability per
unit time, P���, that a given task sits in the queue for a time
� before being executed is conveniently expressed in terms
of two quantities: �a� the probability per unit time, G�n ,x ,��,
that a given task of priority x, which arrives in the queue at
time t=0 with exactly n items of higher priority �i.e., larger
x� already in the queue, gets executed at time �; and �b� the

probability Q̃�n ,x� of there being exactly n items in the
queue with priority greater than x, once a steady state has
been achieved �cf. Ref. �8�, Eq. �2.10��:

P��� = �
n=0

	 �
0

1

dx Q̃�n,x�G�n,x,�� . �1�

As in �6�, let Q�m ,x , t� be the probability that at time t there
are exactly m tasks with priority greater than x in the queue,
for m=0,1 ,2 , . . . . Then Q�m ,x , t� satisfies the following
master equations, for m�0 and m=0, respectively:

�Q�m,x,t�/�t = aQ�m + 1,x,t� + bQ�m − 1,x,t�

− �a + b�Q�m,x,t� ,

�Q�0,x,t�/�t = aQ�1,x,t� − bQ�0,x,t�; �2�

here a=� and b�x�=�	x
1��z�dz=��1−x� are the respective

probabilities per unit time of the number of tasks with pri-
orities greater than x in the queue decreasing by 1 �provided
m
1� and increasing by 1. �We will generally suppress the
explicit x dependence of b in what follows.�

As in Ref. �6�, it is simple to show that for ��� the
steady-state solution of Eqs. �2� achieved as t→	, where
�Q�m ,x , t� /�t vanishes for all m, is

Q̃�m,x� = �1 − b/a��b/a�m. �3�

Since �again, as in �6��, b�0� approaches a as � approaches �

from below, the distribution Q̃�m ,0� becomes uniform in m,
and the mean number of tasks in the queue in steady state,

m�x=0��, diverges as 1 / ��−��. Thus, though in this strict

PHYSICAL REVIEW E 77, 012101 �2008�

1539-3755/2008/77�1�/012101�3� ©2008 The American Physical Society012101-1

http://dx.doi.org/10.1103/PhysRevE.77.012101


sense the steady-state distribution is ill defined for �=�
�4,8�, in fact the queue does have well-defined steady-state
properties since, for �=�, the mean number of tasks with
priorities greater than x is 
m�x��= �1 /x−1� and thus remains
finite for any x�0. �The case ���, shown in �6� to be
closely related to the case �=�, will be summarized at the
end of the paper.�

We continue with the analysis, restricting ourselves to �

� for now. To compute G�n ,x ,��, consider p�m ,x , t�, the
probability that at time t there are exactly m tasks with pri-
ority greater than or equal to x in the queue, and that these
tasks include the task with priority x that arrived at time t
=0; here m is a positive integer. For m�1 and m=1, respec-
tively, p�m ,x , t� satisfies master equations similar to those
for Q�m ,x , t�:

�p�m,x,t�/�t = ap�m + 1,x,t� + bp�m − 1,x,t�

− �a + b�p�m,x,t� ,

�p�1,x,t�/�t = ap�2,x,t� − �a + b�p�1,x,t� . �4�

Since there are exactly n tasks with priority greater than x at
t=0, the initial condition on these equations is p�m ,x , t=0�
=�m,n+1.

The only difference between the equations for Q and for p
is at the boundary: It is easy to see that the total probability
Qtot�x , t���m=0

	 Q�m ,x , t� has a vanishing time derivative

Q̇tot�x , t�=0, whereas the derivative ṗtot�x , t� of the probabil-
ity ptot�x , t���m=1

	 p�m ,x , t� satisfies ṗtot�x , t�=−ap�1,x , t�.
This reflects the fact that m=0 is an absorbing boundary for
p�m ,x , t�: When m=1, only the task with priority x that ar-
rived in the queue at t=0 is present. If that task is executed,
then the process of emptying the queue of tasks whose pri-
orities equal or exceed x is complete, which implies that
G�n ,x ,��=−ṗtot�x , t�=ap�1,x , t�.

Equations �4�, which represent a random walk with a drift
velocity �see �9� and �6��, are solved by standard Laplace
transform methods �e.g., �9��, the chain of equations for the
Laplace transform p̃�m ,x ,s� of p�m ,x , t� taking the forms,
for m�1 and m=1, respectively,

�s + a + b�p̃�m,x,s� = ap̃�m + 1,x,s� + bp̃�m − 1,x,s� + �m,n+1,

�s + a + b�p̃�1,x,s� = ap̃�2,x,s� + �1,n+1. �5�

It is easy to verify that the solution of these equations is
given by p̃�m ,x ,s�=cmp̃�1,x ,s�+dm, where cm��+

m

−−
m� / �+−−� and dm���m−n−1��−

m−n−1−+
m−n−1� /a�+

−−�. Here ��n��0 for n�0 and ��n��1 for n�0, and ±

are the solutions of the quadratic equation a2− �s+a+b�
+b=0. We define + to be the solution that approaches s /a
for large s. It can then be shown �10� that +  
 − for all
s. It follows that, at all s for which +  �1 �which is the
case for all sufficiently large s�, p̃�1,x ,s� must be given by
p̃�1,x ,s�= �+�−n−1 /a in order for p̃�m ,x ,s� to be bounded

for large m. Hence G̃�n ,x ,s�, the Laplace transform of

G�n ,x , t�, is given by G̃�n ,x ,s�= �+�−n−1. From Eq. �1�, we
then have the expression

P��� = �
n=0

	 �
0

1

dx�
�−i	

�+i	 ds

2�i
es��1 − b/a��b/a�n�+�−n−1

�6�

for the desired quantity P���. Here � is an arbitrary positive
real number that is chosen large enough so that +  �1 for
all s on the integration path. Performing the sum over n
yields

P��� = �
0

1

dx�
�−i	

�+i	 ds

2�i
es��1 − b/a��+ − b/a�−1. �7�

Aside from the factor es�, the only s dependence of the inte-
grand comes from +. The only singularities of the integrand
occur where + itself has singularities, i.e., along a branch
cut on the real axis between s−�−��a+�b�2 and s+�−��a
−�b�2. It is easy to show that this branch cut lies entirely to
the left of the integration path in Eq. �7�. �The factor �+

−b /a� vanishes only if �=� and x=0, and then only at s
=s+=0, which is the branch point at the right end of the
branch cut.� The integral is performed by closing the contour
at large s in the left half plane. We now deform this contour
into one that runs just above and below the branch cut and
encloses it counterclockwise in standard fashion �11�, yield-
ing the following expression for P���:

P��� = �
0

1

dx�
s−

s+

ai
ds

2�i
es��1 − b/a�

��s − s−��s+ − s��1/2

�− sb�
.

�8�

It remains only to extract the leading behavior of this
double integral for asymptotically large �. Note that, as �
gets large, the integral is dominated increasingly by values of
s near the upper limit s+ of the integration range. Writing s
=s+−u, we have

P��� = �
0

1

dx�
0

s+−s−

du
e�s+−u���a − b��u�s+ − u − s−��1/2

2�b�u − s+�
.

�9�

We now distinguish two cases.
�a� �=�. Here s+=−��a−�b�2=−�x2 /4+O�x3�, where-

upon the largest values of the exponentials and hence
the leading asymptotic behavior of the double integral come
from the region where both x and u are near 0. Using
a−b=�x, we expand the integrand to leading order in x
and u, obtaining, up to a multiplicative constant,
e−��x2/4+u��xu1/2 / �Au+Bx2�, for positive constants A and B.
Sending the upper limits on both the u and x integrals to
infinity, we perform the rescalings x=x� /�1/2 and u=u� /� to
yield P�����−3/2, the prefactor being a convergent double
integral over x� and u�.

�b� ���. Here a−b=�−�+�x, and so approaches a
nonzero constant as x→0, as does s+, which behaves like
s+�−����−���2+vx+O�x2��, where v������−���. Thus
the exponential factor in the integrand behaves as
e−���−���2�e−�vx+u+O�x2���, from which it follows that, again, the
asymptotic behavior comes from x and u both near 0. All the
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nonexponential factors of the integrand approach constants at
x=u=0, except for the factor u1/2. Sending the upper limits
on the integrals to infinity and performing the rescalings x
=x� /� and u=u� /�, we find, for asymptotically large �,
P�����−5/2e−�/�0 �12�, where �0����−���−2.

It is instructive to compare this result with that for the
continuous-task approximation of Ref. �6� �see Model A,
case �2�, ����. There we obtained P�����−5/2 exp�−� /�0�
where 1 /�0= ��−��2 / �4��1−���, � and � were probabilities
per discrete time step, and �0 was the exponential time con-
stant expressed as a number of time steps. If successive time
steps are spaced �t apart, the task execution and arrival rates
are ��=� /�t and ��=� /�t, and the exponential time con-
stant is �0�=�0�t. For the continuous-time limit, we take �t
→0, keeping ��and �� constant, and obtain 1 /�0�=���1
−��2 /4 where ���� /��. By way of comparison, the present
paper yields �affixing primes to keep the notation consistent�
1 /�0�= ����−����2=���1−���2. The critical point is at �
=1, where this case �b� changes over to case �a�. In the limit
�→1 from below, we have ���1−���2→����1−��2 /4
+O(�1−��3)�, which agrees near the critical point, as it
should, with the result from Ref. �6�.

Finally, we consider the case ���, wherein tasks arrive
more frequently than they are executed on average, produc-

ing a queue that grows in time t as ��−��t. As we pointed
out in Ref. �6�, however, tasks with priorities x�x����
−�� /� are executed more frequently than they arrive on av-
erage, since their rate of arrival, ��1−x�, is less than �. As in
�6�, therefore, the analysis of these tasks can be shown to be
identical to that of case �a� above. In particular, the change of
variable from x to w defined by x=x�+ �1−x��w maps the
range x��x�1 onto the range 0�w�1, and transforms the
quantities a�� and b�x����1−x� in Eqs. �2� and �4� into

ã= �̃ and b̃�w�=��1−x���1−w�= �̃�1−w�, respectively,

where �̃= �̃=�. Hence the problem of the tasks with x�x�

maps precisely onto the original problem with �=�, i.e.,
case �a� above, for which P�����−3/2.

Since, moreover, the total number of tasks with x�x� in
the queue grows without bound as time progresses, the prob-
ability of executing such a task approaches 0 in the long-time
limit. Asymptotically, therefore, all such tasks remain in the
queue forever.
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