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Power-law and exponential tails in a stochastic priority-based model queue
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We derive exact asymptotic results for a stochastic queueing model in which tasks are executed according to
a continuous-valued priority. The distribution P(7) of the waiting times 7 of executed tasks for this model is

shown to behave asymptotically as a power law, P(7)~
execution u satisfy w=N\ (as was earlier noted empirically). For u>N\, P(7) ~
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I. INTRODUCTION

In an interesting recent series of papers [1-3], Barabdsi
and co-workers analyzed data on activities such as web
browsing, library use, and the exchange of letters and e-mail
messages. Studying the distributions P(7) of waiting times 7
between successive events—for example, the time it takes
for the recipient of a letter or e-mail message to reply to
it—they reported that the distributions exhibited heavy tails
consistent with power laws P(7) ~ 7% over some range of 7.
The reported values of « were close to 3/2 for written cor-
respondence and close to 1 for the other activities. These
results stand in contrast to much of the large literature on
waiting-time distributions for real and model queues, where
exponential decays of P(7) are typical [4].

Several elementary queueing models were considered in
Refs. [1-3] to try to explain the observed behavior. One of
these models was the continuous-priority version of a classic
model by Cobham [5]—a stochastic queue wherein tasks are
selected for execution on the basis of a discrete task priority
value. The continuous-priority version of this model was in-
deed found numerically to exhibit asymptotic power-law be-
havior of P(7), with exponent 3/2, provided the average rate
\ of task arrival equals [1-3] or exceeds [2,3] the average
rate u of task execution. We subsequently derived this result
analytically [6], as well as the new result [6] P(7)
~ 772 exp(~7/ 7)) for w>N\, by approximating the number
of tasks in the queue by a continuous variable, and thereby
mapping the model onto the familiar problem of biased dif-
fusion; here 7, is a characteristic time that diverges as (u
—\)~2 as \ approaches u from below.

In the present paper, we solve the model without approxi-
mation, deriving exact asymptotic results for the realistic
case in which the number of tasks is an integer [7]. We
show that indeed P(7)~ 7% for w=N\, and that P(7)
~ 752 exp[-(Vu—\\)27] for w>\.

II. THE MODEL: STOCHASTIC, CONTINUOUS-
PRIORITY QUEUE

In the continuous-priority version [1] of the Cobham
model [5], new tasks, having priority x (with 0=x=1) cho-
sen randomly from an arbitrary probability distribution p(x)
(which we make uniform by a simple transformation, with-
out any loss of generality [6]), arrive in the queue with an
average rate \. The highest-priority task in the queue is ex-
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7732, when the average rates of task arrival A\ and
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ecuted with an average rate u. As in Ref. [1], we consider the
case in which the removal from the queue of a task that has
been selected for execution occurs instantaneously (i.e., with
zero service time).

II1. ANALYSIS

In a manner similar to Ref. [6], the overall probability per
unit time, P(7), that a given task sits in the queue for a time
7 before being executed is conveniently expressed in terms
of two quantities: (a) the probability per unit time, G(n,x, 7),
that a given task of priority x, which arrives in the queue at
time r=0 with exactly n items of higher priority (i.e., larger
x) already in the queue, gets executed at time 7; and (b) the
probability Q(n,x) of there being exactly n items in the
queue with priority greater than x, once a steady state has
been achieved [cf. Ref. [8], Eq. (2.10)]:

> 1
P(D=2 | dx0(nx)G(nx,7). (1)
n=0 Y0

As in [6], let Q(m,x,t) be the probability that at time ¢ there
are exactly m tasks with priority greater than x in the queue,
for m=0,1,2,... . Then Q(m,x,t) satisfies the following
master equations, for m>0 and m=0, respectively:

d0(m,x,1)/dt=aQ(m+ 1,x,t) + bQ(m — 1,x,1)
—(a+b)Q(m,x,t1),

40(0,x,1)/dt =aQ(1,x,t) — bQ(0,x,1); (2)

here a=u and b(x)=\[ ip(z)dz:)\(l—x) are the respective
probabilities per unit time of the number of tasks with pri-
orities greater than x in the queue decreasing by 1 (provided
m=1) and increasing by 1. (We will generally suppress the
explicit x dependence of b in what follows.)

As in Ref. [6], it is simple to show that for u>\ the
steady-state solution of Egs. (2) achieved as t—, where
dQ(m,x,t)/ ot vanishes for all m, is

O(m,x) = (1 = bla)(bla)™. (3)

Since (again, as in [6]), b(0) approaches a as \ approaches u

from below, the distribution Q(m,0) becomes uniform in m,
and the mean number of tasks in the queue in steady state,
(m(x=0)), diverges as 1/(w—N\). Thus, though in this strict
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sense the steady-state distribution is ill defined for A\=pu
[4,8], in fact the queue does have well-defined steady-state
properties since, for A=, the mean number of tasks with
priorities greater than x is (m(x))=(1/x—1) and thus remains
finite for any x>0. (The case w<\, shown in [6] to be
closely related to the case w=N\, will be summarized at the
end of the paper.)

We continue with the analysis, restricting ourselves to u
=\ for now. To compute G(n,x,7), consider p(m,x,t), the
probability that at time ¢ there are exactly m tasks with pri-
ority greater than or equal to x in the queue, and that these
tasks include the task with priority x that arrived at time ¢
=0; here m is a positive integer. For m>1 and m=1, respec-
tively, p(m,x,t) satisfies master equations similar to those
for Q(m,x,1):

dp(m,x,t)/dt = ap(m + 1,x,t) + bp(m — 1,x,1)
—(a+b)p(m,x,1),

Ip(1,x,0)/dt=ap(2,x,t) — (a+ b)p(1,x,1). (4)

Since there are exactly n tasks with priority greater than x at
t=0, the initial condition on these equations is p(m,x,1=0)
=Opnni1-

The only difference between the equations for Q and for p
is at the boundary: It is easy to see that the total probability
Quoilx,)=="_0(m,x,1) has a vanishing time derivative

Qu(x,1)=0, whereas the derivative p,(x,t) of the probabil-
ity pox,t)=2_ p(m,x,t) satisfies p(x,1)=—ap(1,x,1).
This reflects the fact that m=0 is an absorbing boundary for
p(m,x,t): When m=1, only the task with priority x that ar-
rived in the queue at =0 is present. If that task is executed,
then the process of emptying the queue of tasks whose pri-
orities equal or exceed x is complete, which implies that
G(n’x’T)=_ptot(x’[)=ap(l ,X,t).

Equations (4), which represent a random walk with a drift
velocity (see [9] and [6]), are solved by standard Laplace
transform methods (e.g., [9]), the chain of equations for the
Laplace transform p(m,x,s) of p(m,x,t) taking the forms,
for m>1 and m=1, respectively,

(s +a+b)p(m,x,s)=ap(m+1,x,5) + bp(m — 1,x,5) + 6,41

(S+a+b)ﬁ(1’x’s)=aﬁ(2’x9s)+51,n+1' (5)

It is easy to verify that the solution of these equations is
given by p(m,x,s)=c,p(l,x,s)+d,, where c,=(B}
-B")/(B.~B-) and d,,=6(m—n—1)(B "= BI™"")/a(B,
—B_). Here 6(n)=0 for n=0 and 6(n)=1 for n>0, and B,
are the solutions of the quadratic equation aB’>—(s+a+b)f3
+b=0. We define S, to be the solution that approaches s/a
for large |s|. It can then be shown [10] that |8, | =|B_| for all
s. It follows that, at all s for which |8,|>1 (which is the
case for all sufficiently large |s|), p(1,x,s) must be given by
p(1,x,5)=(B,)"""/a in order for p(m,x,s) to be bounded

for large m. Hence é(n,x,s), the Laplace transform of
G(n,x,t), is given by é(n,x,s):(,&)‘"‘l. From Eq. (1), we
then have the expression
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* 1 Y+ico ds
P(D=2 | dx f e’"(1 = bla)(bla)"(B,) ™"
n=0 70 y-i

o 270
(6)

for the desired quantity P(7). Here vy is an arbitrary positive
real number that is chosen large enough so that |B,|>1 for
all s on the integration path. Performing the sum over n
yields

! T s
P(7) =f dxf -¢*(1 =bla)(B,—bla)™". (7)
0 i 2770

Aside from the factor ", the only s dependence of the inte-
grand comes from f3,. The only singularities of the integrand
occur where S, itself has singularities, i.e., along a branch
cut on the real axis between s_=—(\a+\b)? and s,=—-(Va
- \@)2. It is easy to show that this branch cut lies entirely to
the left of the integration path in Eq. (7). [The factor (8,
—b/a) vanishes only if u=\ and x=0, and then only at s
=s,=0, which is the branch point at the right end of the
branch cut.] The integral is performed by closing the contour
at large |s| in the left half plane. We now deform this contour
into one that runs just above and below the branch cut and
encloses it counterclockwise in standard fashion [11], yield-
ing the following expression for P(7):

U ds o [sms)(s,- 9]
P(7')=f0 dxfs_ alZm'e (1-">bl/a) sb) .

(8)

It remains only to extract the leading behavior of this
double integral for asymptotically large 7. Note that, as 7
gets large, the integral is dominated increasingly by values of
s near the upper limit s, of the integration range. Writing s
=s,—u, we have

1 S4—S_ e(s+—u)7'(a _ b)[u(s+ —u— S_)]l/z
P(T)=f0 deO du 27b(u—s,) .

)

We now distinguish two cases. _

(@) mw=\. Here s,=—(Na—\b)>*=—Ax*/4+0(x), where-
upon the largest values of the exponentials and hence
the leading asymptotic behavior of the double integral come
from the region where both x and u are near 0. Using
a—-b=\x, we expand the integrand to leading order in x
and wu, obtaining, up to a multiplicative constant,
e~ O T 12 (Au+Bx?), for positive constants A and B.
Sending the upper limits on both the # and x integrals to
infinity, we perform the rescalings x=x'/7"? and u=u'/7 to
yield P(7)~ 72, the prefactor being a convergent double
integral over x’ and u'.

(b) w>N\. Here a—b=pu—N+\x, and so approaches a
nonzero constant as x—0, as does s,, wh_ich_beha_ves like
s, ~=[(V—=V\)2+vx+0(x?)], where v = VA(Vu—\). Thus
the exponential factor in the integrand behaves as
e‘(“J’“\’X)zfe‘["“””o("z)]T, from which it follows that, again, the
asymptotic behavior comes from x and u both near 0. All the
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nonexponential factors of the integrand approach constants at
x=u=0, except for the factor u'?>. Sending the upper limits
on the integrals to infinity and performing the rescalings x
=x'/7 and u=u'/7, we find, for asymptotically large 7,
P(7)~ 7732770 [12], where 7= (\u—V\)72.

It is instructive to compare this result with that for the
continuous-task approximation of Ref. [6] [see Model A,
case (2), N<u]. There we obtained P(7)~ 7% exp(—1/ )
where 1/75=(u—N)?*/[4u(1-\)], u and \ were probabilities
per discrete time step, and 7, was the exponential time con-
stant expressed as a number of time steps. If successive time
steps are spaced At apart, the task execution and arrival rates
are u'=p/At and N'=N/At, and the exponential time con-
stant is 7= 7,Ar. For the continuous-time limit, we take Az
—0, keeping u'and N’ constant, and obtain 1/7)=u'(1
—1)%/4 where p=N\'/u'. By way of comparison, the present
paper yields (aﬁxing primes to keep the notation consistent)
1/7)=(u' =N )=/ (1-m)2. The critical point is at 7
=1, where this case (b) changes over to case (a). In the limit
n—1 from below, we have u'(1-\n)?— u'[(1-7)*/4
+0((1-7)%], which agrees near the critical point, as it
should, with the result from Ref. [6].

Finally, we consider the case w <<\, wherein tasks arrive
more frequently than they are executed on average, produc-
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ing a queue that grows in time ¢ as (\—u)7. As we pointed
out in Ref. [6], however, tasks with priorities x>x*=(\
—u)/\ are executed more frequently than they arrive on av-
erage, since their rate of arrival, A(1-x), is less than . As in
[6], therefore, the analysis of these tasks can be shown to be
identical to that of case (a) above. In particular, the change of
variable from x to w defined by x=x*+(1-x*)w maps the
range x* <x <1 onto the range 0 <w <1, and transforms the
quantities a= u and b(x)=\(1-x) in Egs. (2) and (4) into
a=g and bw)=N1-x*)(1-w)=A(1-w), respectively,
where ﬁ:i =u. Hence the problem of the tasks with x> x*
maps precisely onto the original problem with u=A\, ie.,
case (a) above, for which P(7)~ 732

Since, moreover, the total number of tasks with x<x* in
the queue grows without bound as time progresses, the prob-
ability of executing such a task approaches 0 in the long-time
limit. Asymptotically, therefore, all such tasks remain in the
queue forever.
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